
2019-10-24

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math.

Prof. Hiren Patel, Ph.D.

hiren.patel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

The const keyword:

keeping data safe

2
The const keyword: keeping data safe

Outline

• In this lesson, we will:

– Understand the need to protect stored values

– Examine constant local variables and constant references

– Examine constant parameters and constant reference parameters

– See various applications

– Understand the software engineering principle behind this keyword

3
The const keyword: keeping data safe

Programming practice

• Up to this point, we have looked most at principles of programming

• We have seen the structured programming theorem

– This is responsible for our ability to write software projects on the scale we see
today

– By restricting flow control to conditional statements and looping
statements, code maintainability is greatly increased

• We will now look at another software engineering tool that can be
used to reduce both development and maintenance time and costs

4
The const keyword: keeping data safe

Software problem

• Some variables or parameters contain values not meant to be
changed:

int main() {

double pi{3.1415926535897932};

// do something...

if (pi > x) {

// Do something...

} else if (pi = x) {

// Do something else...

}

}

• What happened here?

2019-10-24

2

5
The const keyword: keeping data safe

Local constants

• To prevent anyone from assigning to a local variable after it has been
initialized, that variable can be declared constant:

typename const IDENTIFIER{value};

• During the software design phase, all local variables should be
inspected to determine which are truly variable, and which should
be constant

– Indicating that a local variable is constant can allow for
optimizations by the compiler

– Constants are identified using ALL CAPS s

• This ensures other developers immediately differentiate between
constants and variables

• You can also use

const typename IDENTIFIER{value};

6
The const keyword: keeping data safe

Local constants

• It is a compile-time error if a local constant is initialized:
example.cpp: In function 'int main()':

example.cpp:6:12: error: uninitialized const 'SAMPLE_COUNT'

int const SAMPLE_COUNT;

^

• It is a compile-time error to ever assign to a local constant:

example.cpp: In function 'int main()':

example.cpp:7:15: error: assignment of read-only variable 'SAMPLE_COUNT'

SAMPLE_COUNT = 64;

^

• A local constant is also referred to as a “read-only variable”

7
The const keyword: keeping data safe

Mathematical constants

• Mathematical and physical constants are declared as such:

int main() {

double const PI{3.1415926535897932};

double const TWO_PI{2.0*PI};

double const PI_BY_2{PI/2.0};

double const HC{1.98644586e-25}; // Jm

double const AVOGADRO{6.02214076e23}; // 1/mol

// Do something...

}

8
The const keyword: keeping data safe

Constant parameters

• It is also possible to declare a parameter constant
double average(unsigned int const num_values) {

// cannot accidentally assign to 'num_values'

}

• This prevents any future editor of this code from accidentally
changing the value

– There may be no reason for the function to change this value

– Most functions we have written would benefit from this:
unsigned long factorial(unsigned long const n) {

assert(n <= 20); // 21! = 51090942171709440000 > pow(2, 64)

unsigned long result{1};

for (unsigned long k{2}; k <= n; ++k) {

result *= k;

}

return result;

}

2019-10-24

3

9
The const keyword: keeping data safe

Why not remove const?

• If the const keyword keeps you from doing something you think you
want to do, it’s up to you to revisit the specification:

– Why was it required that the parameter be declared const?

– Have the circumstances changed since the specification was written?

– Who is responsible for the specification, and what is their opinion?

10
The const keyword: keeping data safe

Synopsis

• A perfectly functioning program that uses const will still be a
perfectly functioning program if all instances of const are removed

• A perfectly function program that uses const correctly, however, is

less likely to have errors introduced by subsequent programmers

• A program design that uses const is less likely to have programmers
go down the wrong path during development than one that does
not use const

• All const says to the programmer or compiler:

– This variable, parameter or reference should not be changed

11
The const keyword: keeping data safe

Summary

• Following this lesson, you now:

– Know that the const keyword is there for one reason only:

• To prevent you from assigning to a variable or parameter that must
not be changed

– Understand that anything declared const must be initialized

– Know the relationships:

local variable ↔ local constant

parameter ↔ constant parameter

12
The const keyword: keeping data safe

References

[1] https://en.wikipedia.org/wiki/Const_(computer_programming)

[2] http://www.cplusplus.com/doc/tutorial/constants/

[3] http://www.dietmar-kuehl.de/mirror/c++-faq/const-correctness.html

https://en.wikipedia.org/wiki/Const_(computer_programming)
http://www.cplusplus.com/doc/tutorial/constants/
http://www.dietmar-kuehl.de/mirror/c++-faq/const-correctness.html

2019-10-24

4

13
The const keyword: keeping data safe

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

14
The const keyword: keeping data safe

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

